CENTER FOR PUBLIC INTEREST POLLING

UNIVERSITY \| NEW BRUNSWICK

September 2022

Eagleton Center for Public Interest Polling Rutgers-Eagleton Poll Methodology Statement

Ashley Koning, PhD
Assistant Research Professor
Director, Eagleton Center for Public Interest Polling

Jessica L. Roman, MPP
Research Associate, Eagleton Center for Public Interest Polling

Eagleton Center for Public Interest Polling
Eagleton Institute of Politics | Rutgers University-New Brunswick

The Eagleton Center for Public Interest Polling (ECPIP), home of the RutgersEagleton Poll, was established in 1971. Now celebrating five decades and publication of over 200 public opinion polls on the state of New Jersey, ECPIP is the first and longest continuously running university-based state survey research centers in the United States.

Our mission is to provide scientifically sound, non-partisan information about public opinion. ECPIP conducts research for all levels of government and nonprofit organizations with a public interest mission, as well as college and university-based researchers and staff. ECPIP makes it a priority to design opportunities for undergraduate and graduate students to learn how to read, analyze, design, and administer polls. We pride ourselves on integrity, quality, and objectivity.

To read more about ECPIP and view all of our press releases and published research, please visit our website: eagletonpoll.rutgers.edu.

UNIVERSITY | NEW BRUNSWICK

Questions

TELEHEALTH

Let's talk about some other health care issues.

H1 Have you ever had a telehealth appointment - that is, receive any medical care from a health professional through either an electronic device, such as a tablet or computer, or the telephone...

A Prior to March 2020
B From March 2020 onward

1 Yes
2 No
8 Don't know (VOL)
9 Refused (VOL)

[IF EITHER H1A OR H1B=1, CONTINUE TO H2]

H2 How likely are you to continue using telehealth services for medical care in the future? Would you say...

1 Very likely
2 Somewhat likely
3 Not very likely
4 Or not at all likely
8 Don't know (VOL)
9 Refused (VOL)

UNIVERSITY I NEW BRUNSWICK

CENTER FOR PUBLIC INTEREST POLLING

Weighted Demographics

1,006 New Jersey adults 18+

Overall Margin of Error $=+/-3.8$ percentage points

Please note: Totals may equal slightly more or less than 100% due to rounding.

		Deff	MOE
Man	48\%	1.54	+/- 5.3\%
Woman	52\%	1.47	+/-5.5\%
18-34	27\%	1.40	+/- 7.7\%
35-49	23\%	1.41	+/- 7.5\%
50-64	29\%	1.58	+/-6.9\%
65+	21\%	1.64	+/-8.7\%
Democrat	38\%	1.51	+/-6.0\%
Independent	42\%	1.52	+/-6.1\%
Republican	20\%	1.48	+/- 8.5\%
HS or Less	30\%	1.10	+/- 8.9\%
Some College	29\%	1.24	+/- 7.1\%
College Grad	24\%	1.17	+/-5.5\%
Grad Work	17\%	1.15	+/-6.4\%
White	57\%	1.52	+/-4.9\%
Black	12\%	1.48	+/-11.6\%
Hispanic	19\%	1.45	+/- 9.2\%
Other	12\%	1.51	+/-11.8\%
<50K	22\%	1.45	+/- 9.8\%
50K-<100K	35\%	1.44	+/-6.9\%
100K-<150K	18\%	1.53	+/- 9.0\%
150K+	24\%	1.44	+/- 7.0\%
Urban	17\%	1.46	+/- 9.3\%
Suburb	36\%	1.53	+/-6.4\%
Exurban	14\%	1.52	+/-10.3\%
Phil/South	18\%	1.55	+/- 9.2\%
Shore	17\%	1.52	+/- 9.1\%

UNIVERSITY | NEW BRUNSWICK

Methodology

The Rutgers-Eagleton Poll was conducted by telephone using live interviewers August 30 to September 8, 2022, with a scientifically selected random sample of 1,006 New Jersey adults, 18 or older. Persons without a telephone could not be included in the random selection process. Respondents within a household are selected by asking randomly for the youngest adult male or female currently available. If the named gender is not available, the youngest adult of the other gender is interviewed. This telephone poll included 291 adults reached on a landline phone and 715 adults reached on a cell phone, all acquired through random digit dialing; 327 of the cell phone completes were acquired through one-to-one SMS text messaging by live interviewers that led respondents to an online version of the survey. Distribution of phone use in this sample is:

The data were weighted to be representative of the residential adult population of New Jersey. The weighting balances sample demographics to target population parameters. The sample is balanced, by form and overall, to match parameters for sex, age, education, race/ethnicity, region and phone use. The sex, age, education, race/ethnicity, and region parameters were derived from 2019 American Community Survey PUMS data. The phone use parameter was derived from estimates provided by the National Health Interview Survey Early Release Program. ${ }^{1}$

Weighting was done in two stages. The first stage of weighting corrects for different probabilities of selection across the telephone samples associated with the number of adults in each household and each respondent's telephone usage patterns. This adjustment also

[^0]UNIVERSITY | NEW BRUNSWICK
accounts for the overlapping landline and cell sample frames and the relative sizes of each frame and each sample. ${ }^{2}$

The final stage of weighting balances sample demographics, overall and by form, to match target population benchmarks. This weighting was accomplished using SPSSINC RAKE, an SPSS extension module that simultaneously balances the distributions of all variables using the GENLOG procedure. Weights were trimmed to prevent individual interviews from having too much influence on survey estimates. The use of these weights in statistical analysis ensures that the demographic characteristics of the sample closely approximate the demographic characteristics of the target population.

Post-data collection statistical adjustments require analysis procedures that reflect departures from simple random sampling. We calculate the effects of these design features so that an appropriate adjustment can be incorporated into tests of statistical significance when using these data.

All surveys are subject to sampling error, which is the expected probable difference between interviewing everyone in a population versus a scientific sampling drawn from that population. Sampling error should be adjusted to recognize the effect of weighting the data to better match the population. In this poll, the simple sampling error for 1,006 New Jersey adults is +/-3.1 percentage points at a 95 percent confidence interval. The design effect ${ }^{3}$ is 1.52 , making the adjusted margin of error $+/-3.8$ percentage points. Thus, if 50 percent of New Jersey adults in this sample favor a particular position, we would be 95 percent sure that the true figure is between 46.2 and 53.8 percent ($50+/-3.8$) if all New Jersey adults had been interviewed,

[^1]UNIVERSITY \| NEW BRUNSWICK
rather than just a sample.

Sampling error does not consider other sources of variation inherent in public opinion studies, such as non-response, question wording, or context effects.

This Rutgers-Eagleton Poll was fielded by Braun Research, Inc. with sample from Dynata. The questionnaire was developed and all data analyses were completed in house by the Eagleton Center for Public Interest Polling (ECPIP). The Rutgers-Eagleton Poll is paid for and sponsored by the Eagleton Institute of Politics at Rutgers, The State University of New Jersey, a non-partisan academic center for the study of politics and the political process. Full questionnaires are available on request, and can also be accessed through our archives at eagletonpoll.rutgers.edu. For more information, please contact poll@eagleton.rutgers.edu.

TABLES START ON THE FOLLOWING PAGE

UNIVERSITY | NEW BRUNSWICK

Questions and Tables

The questions covered in this release are listed below. Column percentages may not add to 100% because of rounding. Respondents are New Jersey adults; all percentages are of weighted results. Interpret groups with samples sizes under 100 with extreme caution.

H1 Have you ever had a telehealth appointment - that is, receive any medical care from a health professional through either an electronic device, such as a tablet or computer, or the telephone...

	Prior to March 2020	From March 2020 onward
Yes	21%	60%
No	79%	40%
Unweighted $\mathbf{N}=$	963	987

Eagleton Institute of Politics

UNIVERSITY | NEW BRUNSWICK

Prior to March 2020

Yes	21%
No	79%
Unweighted $\mathbf{N}=$	963

	Party ID			Gender		Race or Ethnicity				Age			
	Dem	Ind	Rep	Man	Woman	Wht	BIk	Hisp	Other	18-34	35-49	50-64	65+
Yes	16\%	24\%	24\%	21\%	21\%	21\%	25\%	21\%	17\%	23\%	24\%	19\%	19\%
No	84\%	76\%	76\%	79\%	79\%	79\%	75\%	79\%	83\%	77\%	76\%	81\%	81\%
Unwt $\mathrm{N}=$	388	381	182	511	441	583	101	155	100	217	233	301	201

	Income				Region					Education			
	<\$50K	$\begin{gathered} \begin{array}{c} \$ 50 K- \\ <\$ 100 K \end{array} \end{gathered}$	$\begin{aligned} & \hline \$ 100 \mathrm{~K}- \\ & <\$ 150 \mathrm{~K} \end{aligned}$	\$150K+	Urban	Suburb	Exurban	Phil/ South	Shore	HS or less	Some college	College grad	Grad work
Yes	57\%	60\%	62\%	56\%	63\%	61\%	56\%	60\%	59\%	58\%	69\%	62\%	49\%
No	43\%	40\%	38\%	44\%	37\%	39\%	44\%	40\%	41\%	42\%	31\%	38\%	51\%
Unwt $\mathrm{N}=$	399	389	187	521	456	596	104	159	103	221	238	312	206

Eagleton Institute of Politics

UNIVERSITY | NEW BRUNSWICK

From March 2020 onward

Yes	60%
No	40%
Unweighted $\mathbf{N}=$	987

	Party ID			Gender		Race or Ethnicity				Age			
	Dem	Ind	Rep	Man	Woman	Wht	BIk	Hisp	Other	18-34	35-49	50-64	65+
Yes	69\%	40\%	15\%	41\%	50\%	46\%	63\%	40\%	37\%	49\%	43\%	42\%	51\%
No	27\%	56\%	83\%	55\%	47\%	49\%	35\%	58\%	61\%	47\%	54\%	56\%	45\%
Unwt $\mathrm{N}=$	397	388	186	521	451	593	105	158	102	222	239	305	207

	Income				Region					Education			
	<\$50K	$\begin{gathered} \begin{array}{c} \$ 50 K- \\ <\$ 100 K \end{array} \end{gathered}$	$\begin{aligned} & \text { \$100K- } \\ & <\$ 150 \mathrm{~K} \end{aligned}$	\$150K+	Urban	Suburb	Exurban	Phil/ South	Shore	HS or less	Some college	College grad	Grad work
Yes	59\%	38\%	44\%	48\%	51\%	48\%	46\%	48\%	33\%	42\%	42\%	48\%	58\%
No	37\%	59\%	54\%	48\%	45\%	49\%	48\%	49\%	67\%	55\%	55\%	49\%	39\%
Unwt $\mathrm{N}=$	142	281	182	272	159	347	134	173	170	129	227	360	263

UNIVERSITY | NEW BRUNSWICK
H2 How likely are you to continue using telehealth services for medical care in the future? Would you say very likely, somewhat likely, not very likely, or not at all likely?

Very likely	39%
Somewhat likely	31%
Not very likely	19%
Not at all likely	10%
Don't know	0%
Unweighted $\mathbf{N}=$	649

	Party ID			Gender		Race or Ethnicity		Age			
	Dem	Ind	Rep	Man	Woman	White, Non-Hispanic	Non-White	18-34	35-49	50-64	65+
Very likely	45\%	38\%	28\%	36\%	41\%	31\%	50\%	41\%	44\%	39\%	29\%
Somewhat likely	34\%	31\%	29\%	33\%	31\%	35\%	27\%	28\%	30\%	32\%	37\%
Not very likely	13\%	24\%	22\%	21\%	17\%	20\%	18\%	21\%	17\%	20\%	18\%
Not at all likely	8\%	8\%	20\%	9\%	11\%	14\%	5\%	10\%	8\%	8\%	16\%
Don't know	1\%	0\%	1\%	1\%	0\%	0\%	1\%	1\%	0\%	1\%	0\%
Unwt N=	253	266	122	324	316	393	242	137	177	201	128

	Income		Region					Education	
	<\$100K	\$100K+	Urban	Suburb	Exurban	Phil/South	Shore	Some college or less	College grad or more
Very likely	39\%	40\%	41\%	41\%	23\%	43\%	41\%	37\%	41\%
Somewhat likely	31\%	33\%	30\%	29\%	46\%	27\%	33\%	30\%	33\%
Not very likely	17\%	22\%	19\%	21\%	23\%	16\%	14\%	20\%	18\%
Not at all likely	13\%	5\%	9\%	8\%	8\%	15\%	12\%	12\%	8\%
Don't know	0\%	0\%	2\%	1\%	0\%	0\%	0\%	1\%	0\%
Unwt $\mathrm{N}=$	276	311	101	232	79	124	113	227	420

Eagleton Institute of Politics
Eagleton Center for Public Interest Polling Rutgers, The State University of New Jersey 191 Ryders Lane
New Brunswick, New Jersey 08901-8557
eagletonpoll.rutgers.edu
Twitter: @EagletonPoll
Facebook: /RutgersEagletonPoll
poll@eagleton.rutgers.edu
848-932-8940

[^0]: ${ }^{1}$ NCHS, National Health Interview Survey, 2017-2019; U.S. Census Bureau, American Community Survey, 20172019.

[^1]: ${ }^{2}$ Buskirk, T. D., \& Best, J. (2012). Venn Diagrams, Probability 101 and Sampling Weights Computed for Dual Frame Telephone RDD Designs. Journal of Statistics and Mathematics, 15, 3696-3710.
 ${ }^{3}$ Post-data collection statistical adjustments require analysis procedures that reflect departures from simple random sampling. We calculate the effects of these design features so that an appropriate adjustment can be incorporated into tests of statistical significance when using these data. The so-called "design effect" or deff represents the loss in statistical efficiency that results from a disproportionate sample design and systematic nonresponse.

